1,117 research outputs found

    Finite element differential forms on cubical meshes

    Full text link
    We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl) and H(div) finite element spaces. Spaces in the family can be combined to give finite element subcomplexes of the de Rham complex which satisfy the basic hypotheses of the finite element exterior calculus, and hence can be used for stable discretization of a variety of problems. The construction and properties of the spaces are established in a uniform manner using finite element exterior calculus.Comment: v2: as accepted by Mathematics of Computation after minor revisions; v3: this version corresponds to the final version for Math. Comp., after copyediting and galley proof

    Boundary conditions for the Einstein-Christoffel formulation of Einstein's equations

    Get PDF
    Specifying boundary conditions continues to be a challenge in numerical relativity in order to obtain a long time convergent numerical simulation of Einstein's equations in domains with artificial boundaries. In this paper, we address this problem for the Einstein--Christoffel (EC) symmetric hyperbolic formulation of Einstein's equations linearized around flat spacetime. First, we prescribe simple boundary conditions that make the problem well posed and preserve the constraints. Next, we indicate boundary conditions for a system that extends the linearized EC system by including the momentum constraints and whose solution solves Einstein's equations in a bounded domain

    Mathematicians take a stand

    Full text link
    We survey the reasons for the ongoing boycott of the publisher Elsevier. We examine Elsevier's pricing and bundling policies, restrictions on dissemination by authors, and lapses in ethics and peer review, and we conclude with thoughts about the future of mathematical publishing.Comment: 5 page

    Finite element differential forms on curvilinear cubic meshes and their approximation properties

    Full text link
    We study the approximation properties of a wide class of finite element differential forms on curvilinear cubic meshes in n dimensions. Specifically, we consider meshes in which each element is the image of a cubical reference element under a diffeomorphism, and finite element spaces in which the shape functions and degrees of freedom are obtained from the reference element by pullback of differential forms. In the case where the diffeomorphisms from the reference element are all affine, i.e., mesh consists of parallelotopes, it is standard that the rate of convergence in L2 exceeds by one the degree of the largest full polynomial space contained in the reference space of shape functions. When the diffeomorphism is multilinear, the rate of convergence for the same space of reference shape function may degrade severely, the more so when the form degree is larger. The main result of the paper gives a sufficient condition on the reference shape functions to obtain a given rate of convergence.Comment: 17 pages, 1 figure; v2: changes in response to referee reports; v3: minor additional changes, this version accepted for Numerische Mathematik; v3: very minor updates, this version corresponds to the final published versio

    Nonconforming tetrahedral mixed finite elements for elasticity

    Get PDF
    This paper presents a nonconforming finite element approximation of the space of symmetric tensors with square integrable divergence, on tetrahedral meshes. Used for stress approximation together with the full space of piecewise linear vector fields for displacement, this gives a stable mixed finite element method which is shown to be linearly convergent for both the stress and displacement, and which is significantly simpler than any stable conforming mixed finite element method. The method may be viewed as the three-dimensional analogue of a previously developed element in two dimensions. As in that case, a variant of the method is proposed as well, in which the displacement approximation is reduced to piecewise rigid motions and the stress space is reduced accordingly, but the linear convergence is retained.Comment: 13 pages, 2 figure
    • …
    corecore